Probing the electronic structure of [2Fe-2S] clusters with three coordinate iron sites by use of photoelectron spectroscopy.
نویسندگان
چکیده
Five series of [2Fe-2S] complexes, [Fe(2)S(2)Cl(2)(-)(x)(CN)(x)](-), [Fe(2)S(2)(SEt)(2)(-)(x)Cl(x)](-), [Fe(2)S(2)(SEt)(2)(-)(x)(CN)(x)](-), [Fe(2)S(2)Cl(2)(-)(x)(OAc)(x)](-) (OAc = acetate), and [Fe(2)S(2)(SEt)(2)(-)(x)(OPr)(x)](-) (OPr = propionate) (x = 0-2), were produced by collision-induced dissociation of the corresponding [4Fe-4S] complexes, and their electronic structures were studied by photoelectron spectroscopy. All the [2Fe-2S] complexes contain a [Fe(2)S(2)](+) core similar to that in reduced [2Fe] ferredoxins but with different coordination geometries. For the first three series, which only involve tricoordinated Fe sites, a linear relationship between the measured binding energies and the substitution number (x) was observed, revealing the independent ligand contributions to the total electron binding energies. The effect of the ligand increases in the order SEt --> Cl --> CN, conforming to their electron-withdrawing ability in the same order. The carboxylate ligands in the [Fe(2)S(2)Cl(2)(-)(x)(OAc)(x)](-) and [Fe(2)S(2)(SEt)(2)(-)(x)(OPr)(x)](-) complexes were observed to act as bidentate ligands, giving rise to tetracoordinated iron sites. This is different from their monodentate coordination behavior in the [4Fe-4S] cubane complexes, reflecting the high reactivity of the unsatisfied three-coordinate iron site in the [2Fe-2S] complexes. The [2Fe-2S] complexes with tetracoordinated iron sites exhibit lower electron binding energies, that is, higher reductive activity than the all tricoordinate planar clusters. The electronic structures of all the [2Fe-2S] complexes were shown to conform to the "inverted energy level scheme".
منابع مشابه
Electronic structure and intrinsic redox properties of [2Fe-2S]+ clusters with tri- and tetracoordinate iron sites.
Using potentially bidentate ligands (-SC2H4NH2), we produced [2Fe-2S]+ species of different coordination geometries by fission of [4Fe-4S]2+ complexes. Even though the ligands are monodentate in the cubane complexes, both mono- and bidentate complexes were observed in the [2Fe] fission products through self-assembly because of the high reactivity of the tricoordinate iron sites. The electronic ...
متن کاملProton-coupled electron transfer reactions at Rieske [2Fe-2S] clusters: three oxidation states and four protonation states
Rieske clusters are unusual amongst [2Fe-2S] clusters because they are ligated by two cysteine and two histidine residues, and because their reduction potentials ([2Fe-2S]) are strongly pH dependent. The pH-dependence arises from deprotonation of the two histidine ligands, which coordinate the redox-active iron centre. Rieske clusters are important components of two respiratory enzymes, the cyt...
متن کاملCancer-Related NEET Proteins Transfer 2Fe-2S Clusters to Anamorsin, a Protein Required for Cytosolic Iron-Sulfur Cluster Biogenesis
Iron-sulfur cluster biogenesis is executed by distinct protein assembly systems. Mammals have two systems, the mitochondrial Fe-S cluster assembly system (ISC) and the cytosolic assembly system (CIA), that are connected by an unknown mechanism. The human members of the NEET family of 2Fe-2S proteins, nutrient-deprivation autophagy factor-1 (NAF-1) and mitoNEET (mNT), are located at the interfac...
متن کاملBiotin synthase contains two distinct iron-sulfur cluster binding sites: chemical and spectroelectrochemical analysis of iron-sulfur cluster interconversions.
Biotin synthase is an iron-sulfur protein that utilizes AdoMet to catalyze the presumed radical-mediated insertion of a sulfur atom between the saturated C6 and C9 carbons of dethiobiotin. Biotin synthase (BioB) is aerobically purified as a dimer that contains [2Fe-2S](2+) clusters and is inactive in the absence of additional iron and reductants, and anaerobic reduction of BioB with sodium dith...
متن کامل[2Fe-2S] cluster transfer in iron-sulfur protein biogenesis.
Monothiol glutaredoxins play a crucial role in iron-sulfur (Fe/S) protein biogenesis. Essentially all of them can coordinate a [2Fe-2S] cluster and have been proposed to mediate the transfer of [2Fe-2S] clusters from scaffold proteins to target apo proteins, possibly by acting as cluster transfer proteins. The molecular basis of [2Fe-2S] cluster transfer from monothiol glutaredoxins to target p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. A
دوره 109 9 شماره
صفحات -
تاریخ انتشار 2005